A Handbook for Earthquake Resistant Construction and Seismic Safety

The Republic of Uganda Ministry of Lands, Housing & Urban Development Kampala

January, **2010**

A Handbook for Earthquake Resistant Construction and Seismic Safety

FOREWORD

Earthquake disasters are unpredictable and occur at a time when they are least expected. Following the earthquake of 1994, the Government of Uganda committed itself to support initiatives that would contribute towards earthquake disaster preparedness and mitigation. Development of guidelines for construction of earthquake resistant building structures was one of the efforts that the Government undertook in this regard. Accordingly, a National Task Force was set up to carry out necessary investigations to develop the appropriate guidelines. The Task Force carried out socio-economic, housing, building materials and construction technology baseline surveys in the project area. Besides, it also reviewed various documentary sources both in hard copy and through Internet. Experiments were also conducted on samples of building materials collected from the districts of Bundibugyo, Kabarole, Kasese, Kamwenge and Kyenjojo to determine their properties and suitability for earthquake resistant construction.

This Handbook is therefore an output of this process and is intended to guide various stakeholders in the construction of earthquake resistant buildings in the earthquake prone areas in Uganda. The guidelines contained herein, if adhered to are expected to significantly reduce the extent of damage on buildings as well as the risk of loss of lives during any major earthquake occurrence. Simplified diagrammatic illustrations have been widely used to illustrate the application of the earthquake resistant principles in construction of safe houses as well as restraining or anchoring nonstructural elements in order to reduce the risk.

•

I wish to acknowledge the contribution of the following Task Force members who worked as a team to accomplish this task:

- Eng. Patrick Batumbya -
- Dr. Twesigomwe Ezera -
- Mabala Shibuta Samuel-
- Eng. Orach Aloysius
- Eng. Okello Wilfred
- Arch. Duncan Kasozi
- Henry Lubega

- Consulting Engineer
- Seismologist
- Project Coordinator
- Principal Structural Engineer
- Principal Materials Engineer
- Principal Architect
 - Senior Structural Engineer

- Adolf Kahuma
 - Rusongoza Partrick Civil Engineer
 - Odwong Nelson

Kirwana James

- Ndagije Emmanuel Senior Architect
- Dramani Santino Senior Sociologist

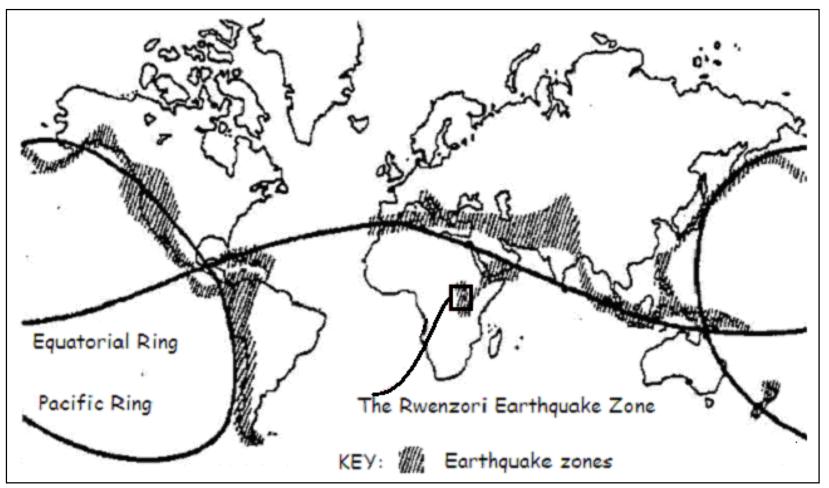
- Materials Engineer

- Senior Architectural Assistant

Senior Quantity Surveyor

• Okema James Henry - Quantity Surveying Assistant

Charles Muganzi


Permanent Secretary

Ministry of Works, Housing and Communications

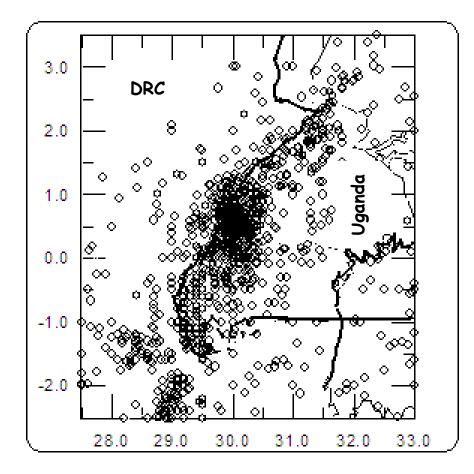

-

TABLE OF CONTENTS

	Page			Page
Foreword	ii	2.10.6	Connection for Timber walls	23
1.0 Introduction	1	2.10.7	Walls for Traditional Mud & wattle house	26
1.1 Facts about Earthquakes	2	2.11	The Openings	26
1.2 Categories of Damage	3	2.12	The Ring Beam	29
1.3 Seismic Source Zones	4	2.13	The Wall Plate	29
2.0 Earthquake Disaster Mitigation – Structural aspects	7	2.14	The Roof	30
2.1 Site Selection & Preparation	7	2.14.1	Types of Roofs	31
2.2 Construction along Slopes	8	3.0	Building Materials	35
2.3 Design for responsiveness to seismic forces	10	3.1	Foundation Materials	35
2.31 Shapes	11	3.2	Floor Materials	36
2.3.2 General Structural Design Principles	12	3.3	Wall Materials	36
2.3.3 Common Structural Design Mistakes	13	3.4	Roofing Materials	37
2.4 Setting Out	13	4.0	Reinforcements	39
2.5 Building Foundation	14	4.1	New Constructions	39
2.5.1 Types of Foundation	14	4.2	Earthquake Upgrading	41
2.5.2 Excavating a Foundation	16	4.3	Maintenance and Checks for Seismic Safety	41
2.6 The Plinth Wall	17	4.4	Decision Making for construction of	
2.7 The Ground Beam	18		Earthquake Resistant building	46
2.8 The Damp Proof Course (DPC)	18	5.0	Earthquake Disaster Preparedness	48
2.9 The Floor Slab	19	5.1	Before Earthquake Disaster	48
2.10 The wall	19	5.2	During the Earthquake Disaster	50
2.10.1Types of Walls	19	5.3	After Earthquake Disaster	51
2.10.2 The Mortar	21	6.0	Proto Type Plans	53
2.10.3 Reinforced Block wall	21	7.0	Unit Cost Analysis	57
2.10.4 Interlocking Block Walls	22	7.1	Comparative Unit Cost Analysis	57
2.10.5 Wooden Walls	23	7.2	Recommended options for seismic safety Bibliography	58

Earthquake zones (Houben, Guillaud 1984)

Each dot represents an earthquake occurrence between 1902 to 1999.

Seismicity in Uganda 1902 - 1999

The Catholic Cathedral at Fort Portal rebuilt after the 1966 earthquake to earthquake resistant standards

The Kingdom of Toro Palace for H.H. King Rukira Bashaija Oyo Nyimba Kabamba Iguru Rukidi; rebuilt after 1994.

Earthquake resistant building in Virika Hospital, Fort Portal, rebuilt after 1994 earthquake; notice the timber at the gable end of the wall.

Landslides are very common in the Rwenzori Zone